
Steps to Using SAS:

A. GETTING STARTED:

- 1. Visit SAS University Edition Website: http://www.sas.com/en_us/software/university-edition/download-software.html
- 2. Determine which Operating System you are using: **Windows, OS X, or LINUX**. Choose the respective tab.

Before You Begin

3. Install Oracle VirtualBox virtualization software on your machine

Install Oracle VirtualBox virtualization software* on your machine.

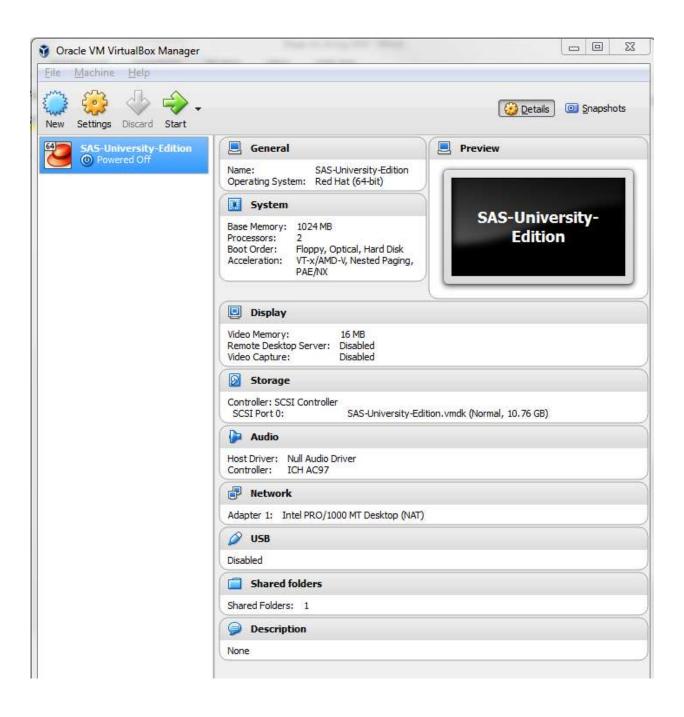
Because SAS University Edition is a virtual application (or vApp), you need virtualization software to run it. You can download Oracle VirtualBox for Windows, a free virtualization software package, using the link below.

Download VirtualBox for Windows

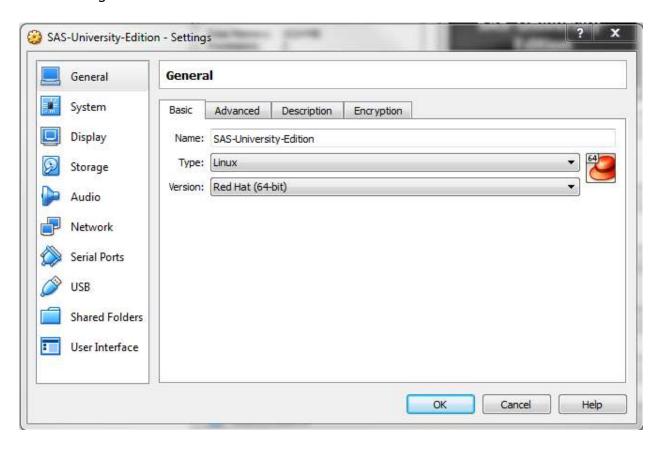
*Note in addition to Oracle VatuaBox, SAS University Edition also works with Without Workstation Player with all 2000 in 18 you prefer to use Valvasidor Player, you gail dewinded there. Without Windows Windo

Note: Once installed, be sure to choose "Linux Red Hat 64-bit" as your operating system. Do not choose your actual operating system, as choosing anything other than "Linux Red Hat 64-bit" may cause an execution error.

4. Download the SAS University Edition vApp.

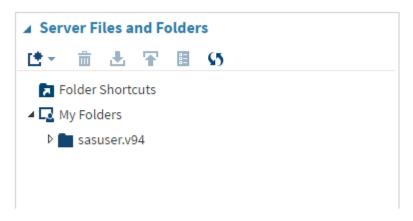

Once you click the download button below, you'll be prompted to:

- 3 Create a SAS profile if you don't already have one. If you already have a SAS profile, log in.
- Accept the user licensing agreement.
- 3 Begin the download. If your browser asks whether you want to save or open the file, click Save to save the file in your Downloads directory.


Note: This application can only be opened through your virtual machine. Therefore, after successful installation of your Virtual Machine, e.g., Oracle's or VMWare's, open up the VM software to run SAS University.

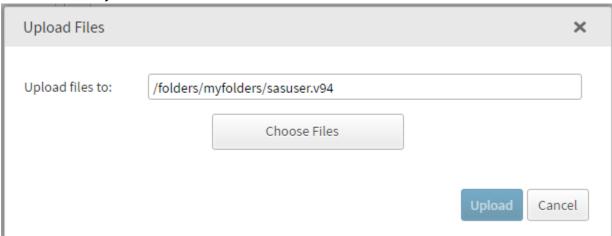
5. <u>If any errors are encountered, be sure to check out SAS videos and pdfs</u>. Also, copy the error code and paste into Google in search for a solution.

6. Open up your Virtual Machine. (This example is for Oracle VM VirtualBox)

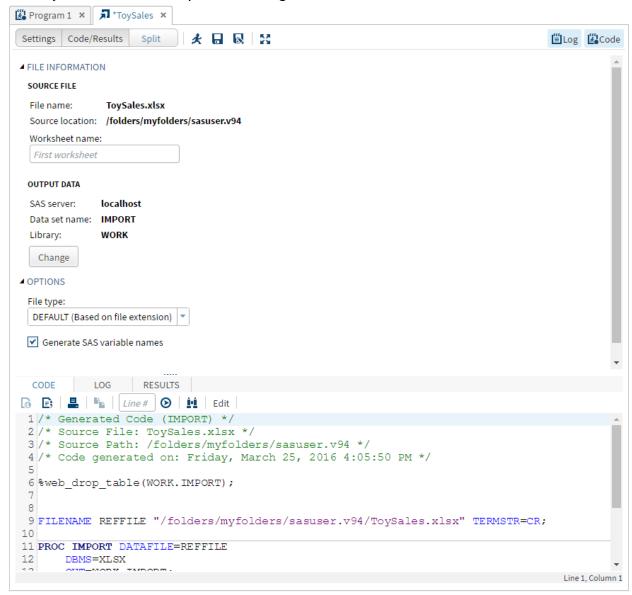


7. Go to Settings and select "Linux Red Hat 64-bit" under the "General" tab.

B. USING SAS STUDIO


1. Choose "Server Files and Folders"

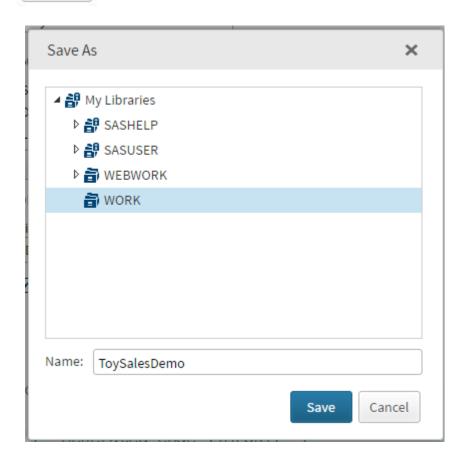
2. Select the sasuser.v94 folder


- 3. Click on the upload ightharpoonup button:
- 4. Choose the file you want:

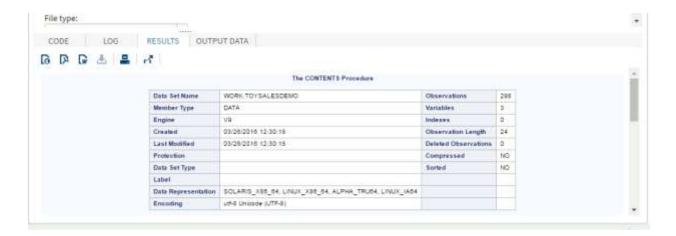
5. Double click the ToySales.xlsx file

6. The ToySales Tab window opens on the right side.

7. List the name of the Worksheet you wish to import in the "Worksheet name:" field. (In this case, the ToySales.xlsx file has only one worksheet, so inserting the worksheet name is not necessary. But had there been multiple sheets, then the desired worksheet for which to import would need to be specified.)


SOURCE FILE

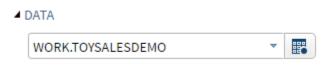
File name:	ToySales.xlsx
Source location:	/folders/myfolders/sasuser.v94
Worksheet name:	
ToySalesData	

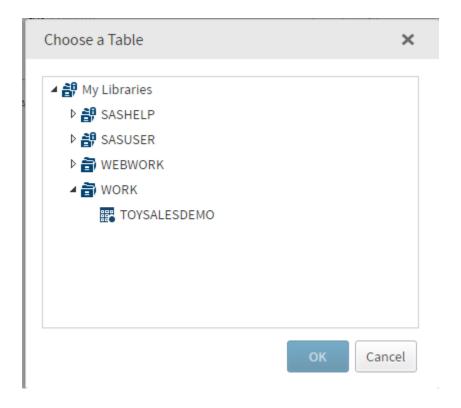

8. Click on the "Change" button within the "OUTPUT DATA" area and "Save as" your file in your desired location with your desired name. (In this demonstration, I saved the file as ToySalesDemo and saved it within the "Work" section.)

OUTPUT DATA

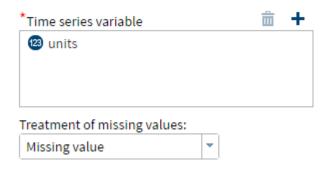
SAS server:	localhost
Data set name:	ToySalesDemo
Library:	WORK
Change	

9. Click on the "Run" button: *Your file data should output into the Results tab at the bottom of your screen, if you are in "Split" mode, which will indicate a successful import.

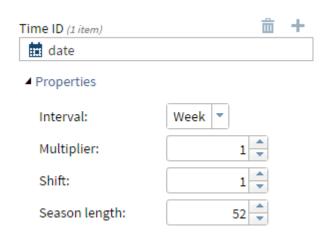

10. Click on the Tasks dropdown menu to expand options:


11. Click on the Forecasting dropdown menu.

- 12. Click on Time Series Data Preparation
 - a. Click on the table button under the DATA section and select your file:

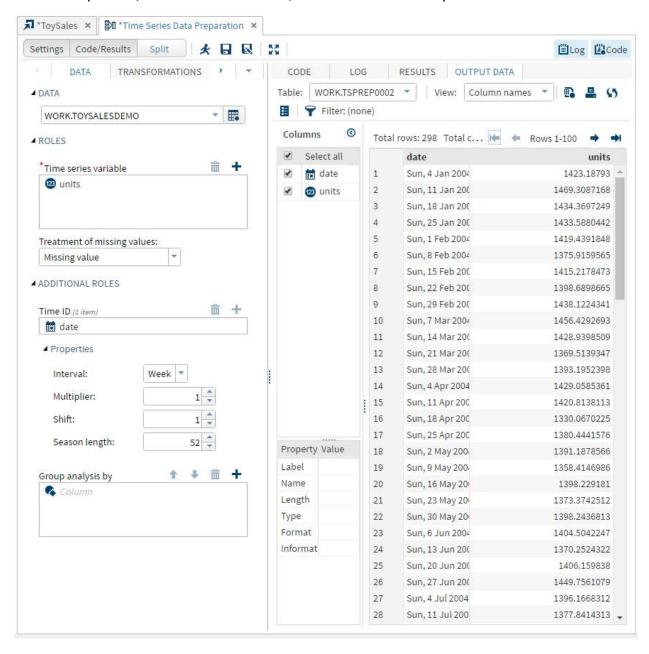


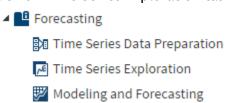
b. Choose your table. (I saved my file as TOYSALESDEMO under the "WORK" category).


c. Under ROLES, click on the + button and select your dependent variable, "units"

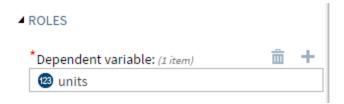
▲ ROLES

d. Click the arrow adjacent ADDITIONAL ROLES to expand menu. Click on the button for Time ID and choose the variable, "date." (The software recognizes the intervals and season lengths in the data and pre-populates the fields)


▲ ADDITIONAL ROLES

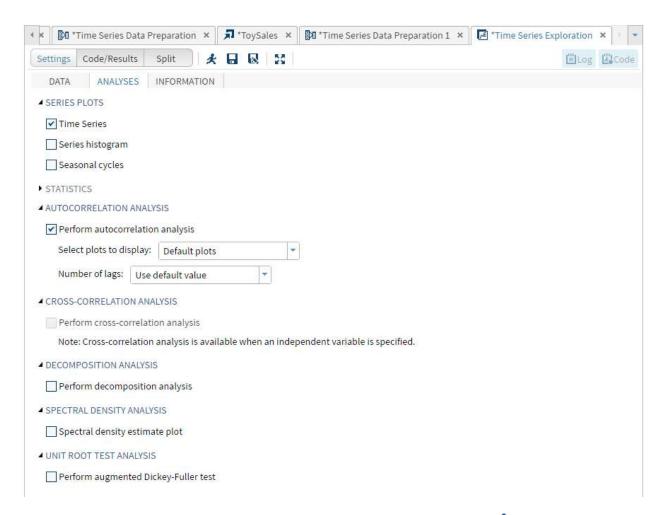

e. After variables have been declared and data prepped, click on the student button along the top, beneath the "Time Series Data Preparation" tab.

f. You can view the data in the OUTPUT DATA section in either the Code/Results tab or Split tab, beneath the main tab, "Time Series Data Preparation."


13. Click on Time Series Exploration task.

a. The file you prepped in "Time Series Data Preparation" should already be preloaded in your DATA field. This will remain true as you go through all "Forecasting" tools.

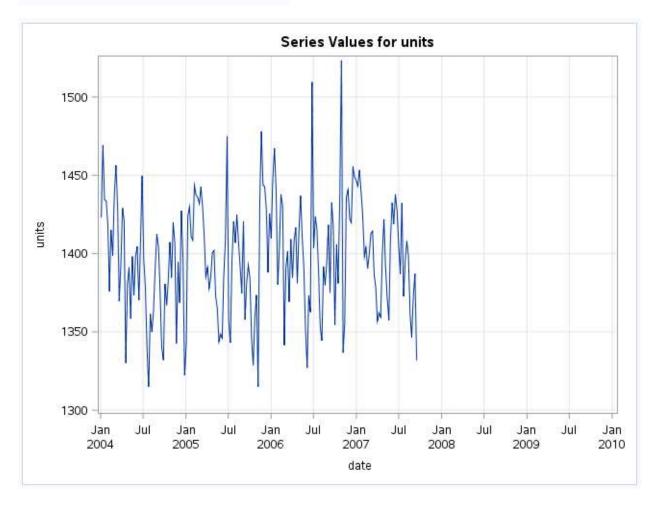
b. Choose "units" under the Dependent variable in the ROLES section.

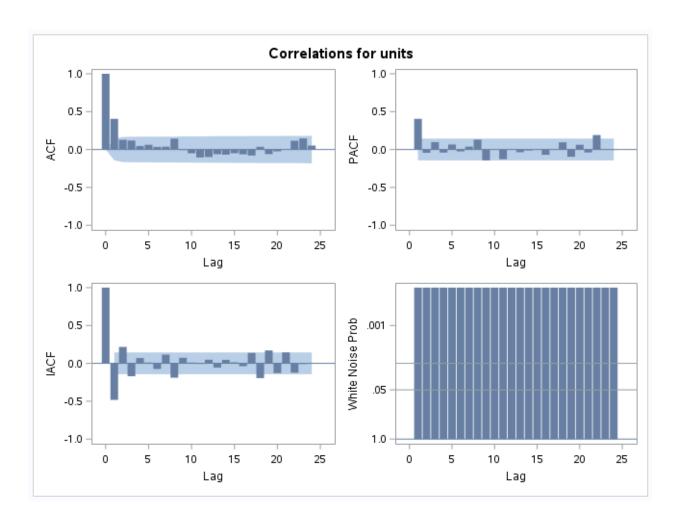


c. Expand the ADDITIONAL ROLES menu and select "date" in the Time ID field.

- d. Then click on the Analyses tab to choose settings for your model. (*Please observe*, different types of charts/graphs may be chosen here within the "Analyses" tab.
 - a. Time Series
 - b. Series Histogram
 - c. Seasonal Cycles

Please select the analysis needed for your intended objective. The default settings, as chosen by the software, are shown below and this demonstration uses such.)

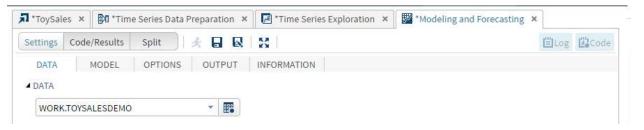

e. After variables have been declared and settings made, click on the ** run button along the top, beneath the "Time Series Exploration" tab.



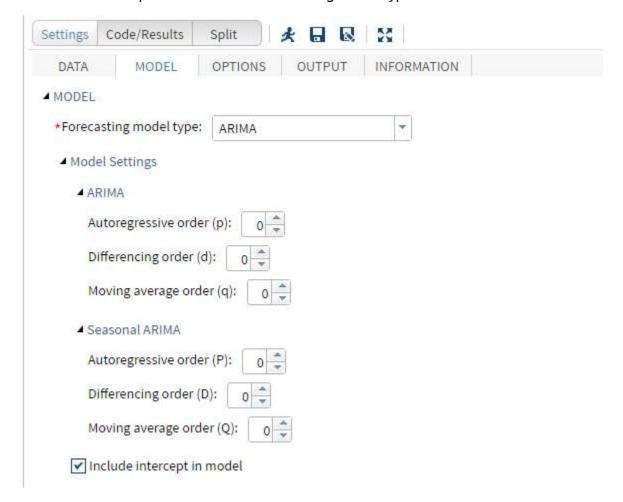
f. To view the results and charts, click on the "Code/Results" tab, then click on "Results"

Input Data Set		
Name	WORK.TEMPSORTED	
Label		
Time ID Variable	date	
Time Interval	WEEK	
Length of Seasonal Cycle	52	

Variable Information		
Name	units	
Label	units	
First	Sun, 4 Jan 2004	
Last	Sun, 16 Sep 2007	
Number of Observations Read	298	

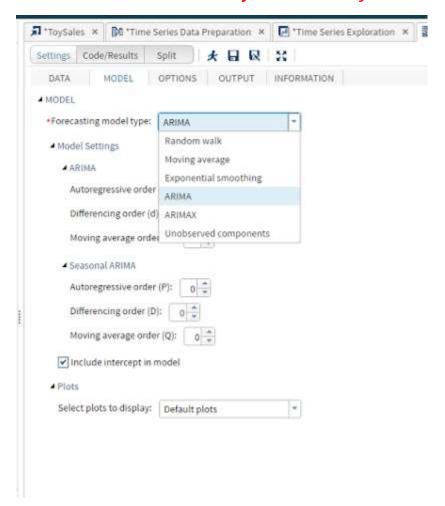

14. Click on Modeling and Forecasting task

a. Your prepped file should be preloaded in your DATA field.

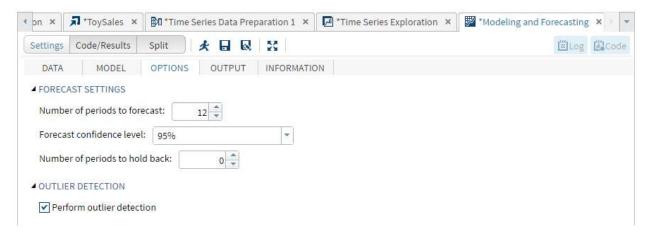

b. Select the "Settings" tab option to display all options available. (Be sure the DATA tab is selected so you may declare your variables.)

- c. Under ROLES, choose "units" as your Dependent variable
- d. Expand the ADDITIONAL ROLES menu and choose "date" in the Time ID field.
- e. Click on the MODEL tab.

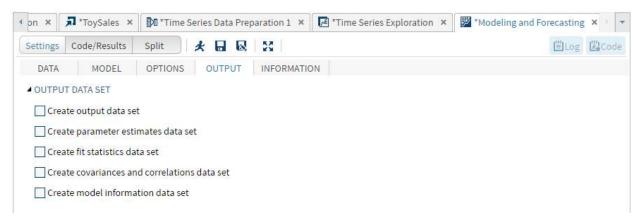
f. Select the dropdown menu for "Forecasting model type:" and select ARIMA

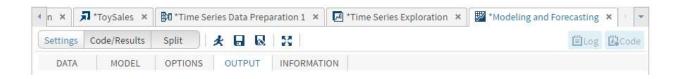


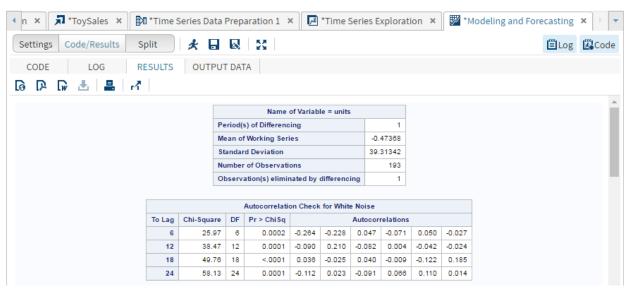
For this example, we will use a 3-1-1 Arima model, so set Autoregressive order to 3, Differencing order to 1, and Moving average order to 1. All else will remain as defaults.

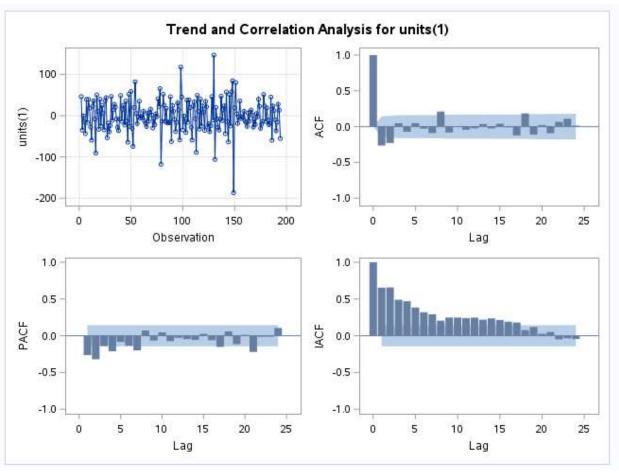

Additionally, please note the plethora of model options to choose from:

- 1. Random Walk
- 2. Moving Average
- 3. Exponential Smoothing
- 4. ARIMA
- 5. ARIMAX
- 6. Unobserved Components


Select the model that best suits your intended objective:

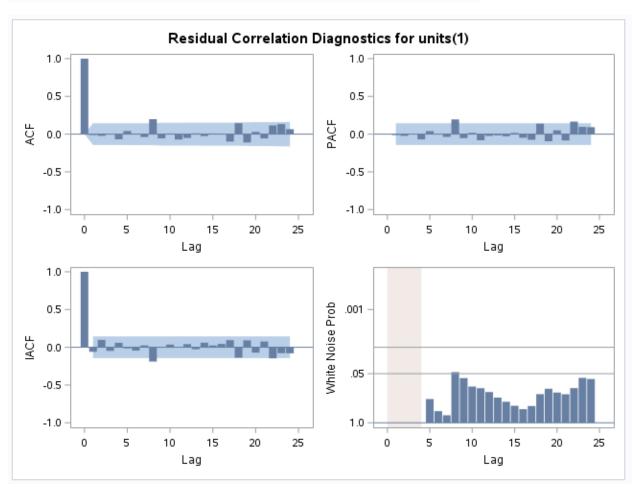

g. Next, choose the OPTIONS tab and adjust settings (*This demonstration keeps everything at default*).

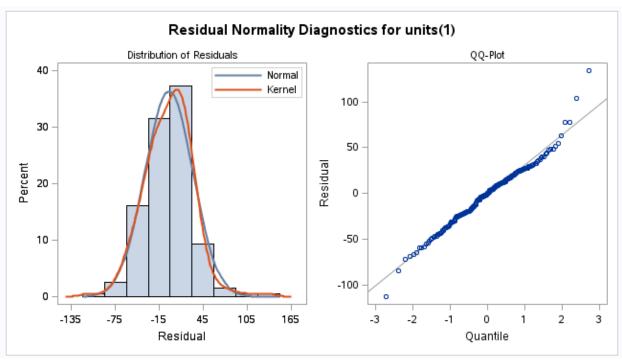

h. Choose the OUTPUT tab and select the desired DATA SETS to be output.



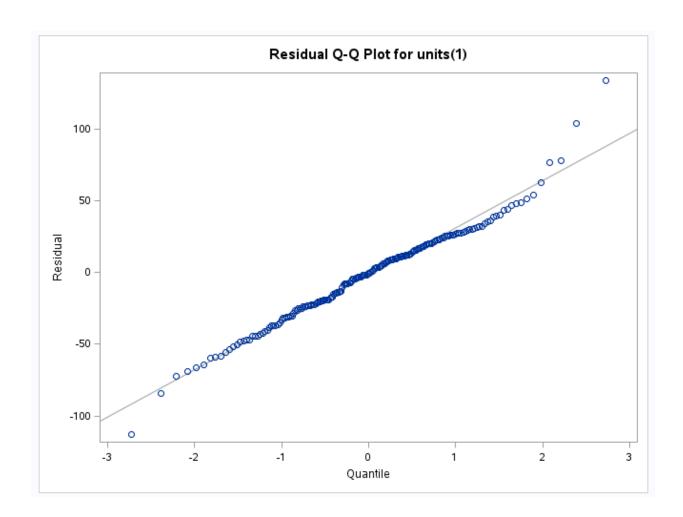
i. After declaring variables, selecting a model, determining options, and figuring out desired outputs, click on the * run button below the "Modeling and Forecasting" tab.

j. Click on "Code/Results," then click on "RESULTS" to see charts and graphs

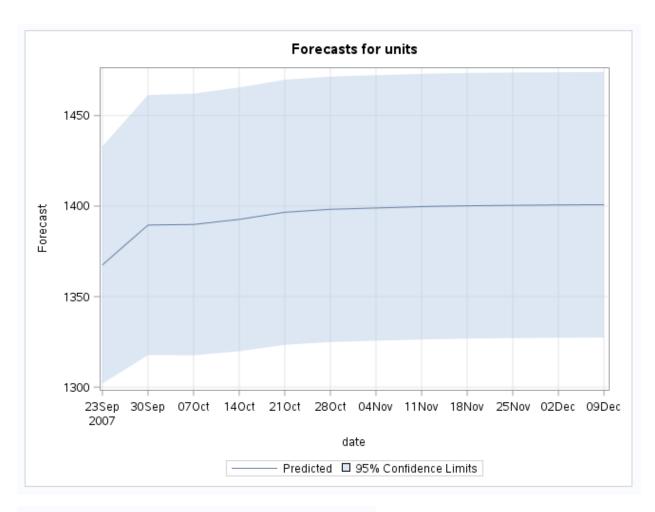

ARIMA Estimation Optimization Summary			
Estimation Method	Maximum Likelihood		
Parameters Estimated	5		
Termination Criteria	Maximum Relative Change in Estimates		
Iteration Stopping Value	0.001		
Criteria Value	10.2586		
Maximum Absolute Value of Gradient	4471.754		
R-Square Change from Last Iteration	0.105576		
Objective Function	Log Gaussian Likelihood		
Objective Function Value	-950.6		
Marquardt's Lambda Coefficient	0.00001		
Numerical Derivative Perturbation Delta	0.001		
Iterations	8		
Warning Message	Estimates may not have converged.		


Maximum Likelihood Estimation						
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag	
MU	0.03052	0.09910	0.31	0.7581	0	
MA1,1	0.99994	7.24843	0.14	0.8903	1	
AR1,1	0.44908	0.07505	5.98	<.0001	1	
AR1,2	-0.07855	0.07941	-0.99	0.3226	2	
AR1,3	0.12221	0.07470	1.64	0.1018	3	

Constant Estimate	0.01548
Variance Estimate	1116.04
Std Error Estimate	33.40718
AIC	1911.199
SBC	1927.513
Number of Residuals	193


Correlations of Parameter Estimates						
Parameter MU MA1,1 AR1,1 AR1,2 AR1,3						
MU	1.000	0.560	0.132	0.044	0.072	
MA1,1	0.560	1.000	0.252	0.107	0.200	
AR1,1	0.132	0.252	1.000	-0.346	0.104	
AR1,2	0.044	0.107	-0.346	1.000	-0.349	
AR1,3	0.072	0.200	0.104	-0.349	1.000	

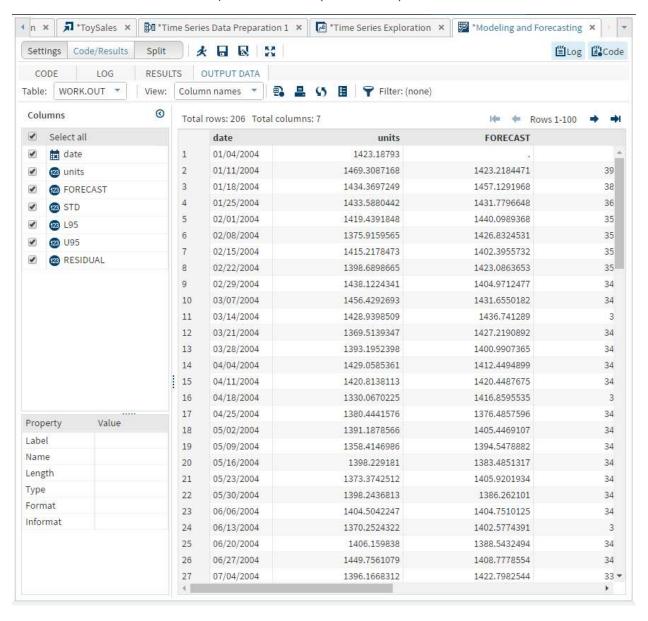
	Autocorrelation Check of Residuals								
To Lag	Chi-Square	DF	Pr > ChiSq	Chi Sq Autocorrelations					
6	1.35	2	0.5099	-0.009	-0.020	0.003	-0.066	0.042	0.009
12	11.85	8	0.1583	-0.036	0.200	-0.054	0.010	-0.070	-0.049
18	18.59	14	0.1812	0.011	-0.024	0.010	-0.001	-0.097	0.146
24	29.84	20	0.0724	-0.109	0.030	-0.055	0.116	0.133	0.066
30	36.94	26	0.0756	-0.066	0.028	-0.103	0.049	-0.106	-0.041
36	39.92	32	0.1586	-0.017	-0.030	0.016	0.008	-0.095	0.044


Model for variable units			
Estimated Mean 0.030517			
Period(s) of Differencing	1		

Autoregressive Factors				
Factor 1:	1 - 0.44908 B**(1) + 0.07855 B**(2) - 0.12221 B**(3)			

Moving Average Factors

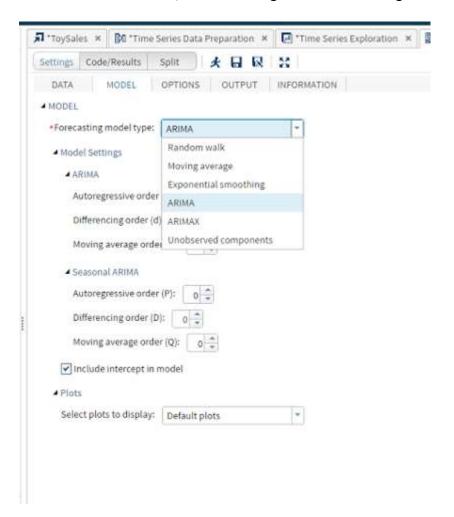
Factor 1: 1 - 0.99994 B**(1)


Forecasts for variable units					
Obs	Forecast	Std Error	95% Confid	ence Limits	
195	1367.4965	33.4072	1302.0197	1432.9734	
196	1389.5245	36.6220	1317.7466	1461.3023	
197	1389.8657	36.8526	1317.6359	1462.0955	
198	1392.6706	37.1580	1319.8422	1465.4990	
199	1396.6109	37.3366	1323.4325	1469.7894	
200	1398.2173	37.3785	1324.9567	1471.4779	
201	1398.9875	37.3944	1325.6957	1472.2792	
202	1399.7042	37.4030	1326.3957	1473.0127	
203	1400.1773	37.4062	1326.8625	1473.4921	
204	1400.4431	37.4074	1327.1261	1473.7602	
205	1400.6284	37.4078	1327.3103	1473.9464	
206	1400.7640	37.4081	1327.4456	1474.0824	

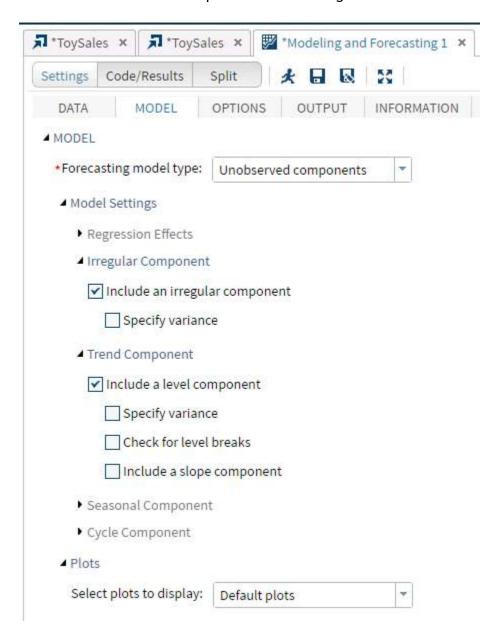
Outlier Detection Summary		
Maximum number searched	4	
Number found	4	
Significance used	0.05	

Outlier Details						
Obs	Туре	Estimate	Chi-Square	Approx Prob>ChiSq		
130	Additive	128.98820	19.17	<.0001		
148	Additive	122.68660	18.29	<.0001		
78	Additive	87.63701	9.93	0.0016		
97	Additive	-79.99659	8.25	0.0041		

k. Click on the OUTPUT DATA tab to see your forecasted quantities, std deviations, confidence intervals, and residuals (differences).

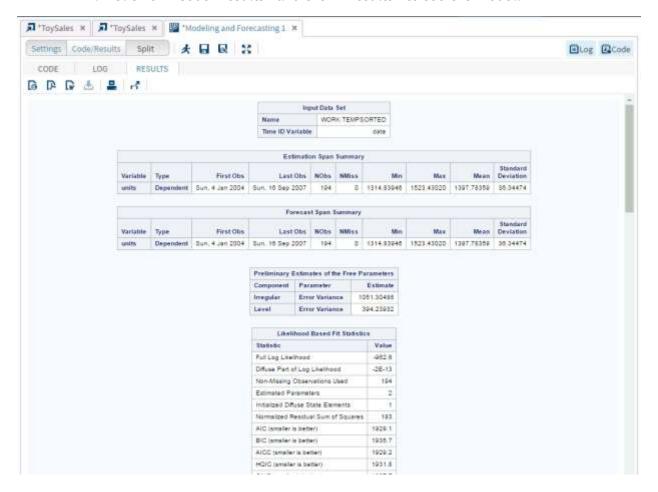

Appendix

1. To find the Mean Squared Error, Root Mean Squared Error, Mean Absolute Percentage Error, or Maximum Percent Error, please select the following:


Fit Statistics Based on Residuals				
Mean Squared Error	1257.21999			
Root Mean Squared Error	35.45730			
Mean Absolute Percentage Error	1.94482			
Maximum Percent Error	9.26984			
R-Square	0.04581			
Adjusted R-Square	0.04081			
Random Walk R-Square	0.18655			
Amemiya's Adjusted R-Square	0.02583			
Number of non-missing residuals used for computing the fit statistics = 193				

- a. Click on Modeling and Forecasting task
 - ▲ Forecasting
 - Time Series Data Preparation
 - Time Series Exploration
 - Modeling and Forecasting
- b. Your data should already be prepped and variables declared. If not, please refer to steps aforementioned above.

c. Under the "MODEL" tab, choose amongst the "Forecasting model type:"



d. Select the "Unobserved components" forecasting model.

e. Adjust settings to your preferences, then click the ** run button.

f. Click on "Code/Results" and then "Results" to see the model.

